top of page

Les graphes

Un graphe est un outil permettant de représenter des objets (sommets) et des liens ou interaction entre ces objets (arrêtes). Exemple : réseau SNCF, villes et routes, réseaux (internet), labyrinthes (les graphes peuvent permettre de trouver les sorties du labyrinthe).

 

I) L'exemple du berger

 

Un berger a un loup, une chèvre et un choux. En présence du berger, la chèvre ne mange pas le chou et le loup ne mange pas la chèvre. Pour traverser une rivière, le berger ne peut transporter qu'un de ses compagnons à la fois. Comment doit-il faire ?

 

Il y a 4 personnages et deux états possibles. Il y a 16 combinaisons possibles.

Chaque combinaison sera simplement représentée par l'état sur la ligne de départ.

Chaque combinaison est un sommet, chaque arrête est un trajet en barque.

 

Combinaisons impossibles :

-choux/chèvre

-loup/chèvre

-loup/berger

-choux/berger

-choux/chèvre/loup

-berger seul

 

B=berger

Cx=choux

C=chèvre

L=loup

*=etat de la ligne de départ

 

 

 

 

 

II sortir d'un labyrinthe

 

Un labyrinthe peut être décrit par un graphe, les croisements étant les objets placés aux sommets, et les couloirs les liens entre ces sommets.

 

 

Entrée A ; Sortie Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) A

2) AB

3) ABC

ABM

4) ABCD

ABCK

ABM

5) ABCDK x

ABCDE

ABCK

ABM

6) ABCDEF x

                                                                                                        ABCDEG                                      Parcours d'un graphe en profondeur

ABCK

ABM

7) ABCDEGH x

ABCDEGI

ABCK

ABM

8) ABCDEGIJ x

ABCK

ABM

9) ABCKL x

ABCKD  x

ABM

10) ABMN  x

    ABMZ   

 

 

x = Possibilité éliminée

 

 

1) A

2) AB

3) ABC

ABM

4) ABCD

                                                                                                  ABCK                                        Parcours d'un graphe en largeur

ABM

5) ABMN x

ABMZ

ABCK

ABCD

 

 

Le parcours d'un graphe en largeur traite d'abord les possibilités les plus courtes. Il permet de trouver le chemin le plus court pour sortir.

Le parcours en profondeur, pour ne pas tourner en rond, doit interdire de repasser par des sommets déjà utilisés.

© 2023 by Name of Site. Proudly created with Wix.com

  • Facebook Social Icon
  • Twitter Social Icon
  • Google+ Social Icon
bottom of page